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Summary

An investigation was conducted in the static

test facility of the Langley 16-Foot Transonic Tun-
nel to determine the internal performance of two-

dimensional convergent-divergent nozzles designed to

have simultaneous pitch and yaw thrust-vectoring ca-

pability. This concept utilized divergent flap rotation

for thrust vectoring in the pitch plane and deflection

of flat yaw flaps hinged at the end of the sidewalls

for yaw thrust vectoring. The hinge location of the

yaw flaps was varied at four positions from the nozzle
exit plane to the throat plane. The yaw flaps were

designed to contain the flow laterally independent of

power setting. In order to eliminate any physical

interference between the yaw flap deflected into the

exhaust stream and the divergent flaps, the down-

stream corners of both upper and lower divergent

flaps were cut off to allow for up to 30 ° of yaw-flap

deflection. This investigation studied tile impact of

varying the nozzle pitch vector angle, throat area,

yaw-flap hinge location, yaw-flap length, and yaw-

flap deflection angle on nozzle internal performance

characteristics. High-pressure air was used to sim-

ulate the jet exhaust at nozzle pressure ratios up
to 7.0.

Static results indicated that configurations with

the yaw-flap hinge located upstream of the exit plane
provided relatively high levels of thrust-vectoring

efficiency without causing large losses in resultant
thrust ratio. Therefore, these configurations rep-

resent a viable concept for providing simultaneous

pitch and yaw thrust vectoring.

Introduction

Mission requirements for the next-generation

fighter will probably require fl_ture combat aircraft

to have short takeoff and landing characteristics in

order to operate from bomb-danlaged runways and
to be able to cruise at supersonic speeds. These fu-

ture aircraft will probably also possess an increased

level of maneuverability at transonic and supersonic

speeds and be able to operate at higher angles of

attack than current fighters. Several investigations

have shown that significant advantages in air com-

bat are gained with the ability to perform transient

maneuvers at high angles of attack including brief

excursions into post-stall conditions (low speed, high

angle of attack). (See refs. 1 to 3.) However, ma-

neuverability at high angles of attack can be limited

because of degraded stability characteristics and in-

adequate aerodynamic control power.

One method of providing large control moments
that do not decrease at post-stall angles of attack

(as do moments generated by aerodynamic controls)

is vcctoring of the engine exhaust. Studies have

shown that the control power provided by 15° of

simultaneous pitch and yaw thrust vectoring can

significantly enhance aircraft agility in the stall and

below-stall angle-of-attack range (refs. 4 to 6). Since

thrust vectoring provides control moments that are

essentially uncoupled from airframe aerodynamics,

its use might allow for an increase in control power

or a reduction in (or elimination of) the aerodynamic
control surfaces and, therefore, a reduction in aircraft

weight and drag.

Several research programs at the NASA Lang-

ley Research Center have shown that thrust vector-

ing can be provided from nonaxisymmetric multi-

function nozzles. Most of the early research focused

on vectoring of the thrust in the longitudinal plane of

the nozzle. (See the discussion of pitch vectoring in

refs. 7 to 12.) Several recent investigations have in-

eluded lateral thrust-vectoring (yaw-vectoring) con-
cepts in addition to pitch thrust vectoring (refs. 13

to 18). One of several nonaxisymmetric nozzles that
have been modified for thrust vectoring is the two-

dimensional convergent-divergent (2-D C-D) nozzle.

Internal contours of a 2-D C-D nozzle provide for

compression and expansion of the flow with upper

and lower convergent and divergent flaps, respec-

tively. Nozzle sidewalls are flat internally and re-

strain the flow in the lateral plane until they termi-

nate, usually at the nozzle exit plane. Typically, the

upper and lower divergent flaps are rotated in the

same direction to provide vectoring of the thrust in
the pitch plane. Without some modifications, how-

ever, yaw thrust vectoring using the sidewalls is not

as simple; deflection of the sidewalls about some ver-

tical hinge would cause interference with the upper
and lower divergent flaps. In order to avoid this inter-

ference, one investigation has studied flat yaw vanes

attached to the nozzle sidewalls at the exit plane (ex-

tending downstream) and deflected into and away

from the exhaust about a vertical hinge at the end

of the sidewalls. This concept was called post-exit

vanes and has been reported in reference 17. Another

yaw-vectoring concept used the internal geometry of

the nozzle at dry power (maximum nonaugmented),
low expansion ratio, and forward-thrust conditions to

size yaw flaps installed in the sidewalls and deflected

about a hinge at the nozzle throat plane. These

yaw flaps were flush with the sidewalls when stowed,

and when deployed they were deflected symmetri-

cally into and out of the exhaust stream (referred

to as the downstream yaw-flap concept in ref. 13).

The post-exit vane concept generated thrust vec-

tor angles up to 70 percent of the yaw-vane deflec-

tion angle, but deflection of these vanes mounted

at the nozzle exit plane caused large losses in
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resultant thrust ratio (up to a 1-percent loss per

degree of resultant yaw vector angle). These large
thrust losses were attributed to the location of the

vanes which were turning supersonic flow. The down-

stream yaw-flap concept generated large thrust vec-

tor angles without causing large losses in resultant
AR

thrust ratio. However, increasing the expansion ra-

tio (nozzle exit area) and/or power setting (throat

area) decreased the efficiency and effectiveness of this Ae
concept. Since the flaps were sized to be deployed be-
tween the divergent flaps and fully contain the flow at Ae/At

dry power, low-expansion-ratio conditions, increas- At
ing the throat and/or exit area allowed some internal

flow to pass over and under the yaw flap deflected into Cd

the exhaust without being turned. Additionally, the F
flap deflected into tile internal flow could not be de-

ployed when the divergent flaps were pitch vectored F/Fi

because of physical interference. Therefore, this con- Fi
cept did not represent a viable multiaxis (combined
pitch and yaw) thrust-vectoring concept.

Employing lessons learned from these two previ-

ous studies, a simultaneous pitch and yaw thrust- FN
vectoring concept has been investigated in the static

test facility of the Langley 16-Foot Transonic Tun- Fr
nel. This concept utilized divergent flap rotation

for thrust vectoring in the pitch plane and deflec-

tion of flat yaw flaps hinged at the end of the side- Fr/F i
walls for yaw thrust vectoring. The hinge location of
the yaw flaps was varied at four positions from the FS

exit plane of tile nozzle (similar to the post-exit vane g
concept of ref. 17) to the throat plane (similar to the
downstream flap concept of ref. 13). However, the
yaw flaps were not sized to be deflected between the he

divergent flaps, but instead they were designed to ht
contain the flow laterally independent of operat-

ing conditions. In order to eliminate any physical l.s

interference between the yaw flap deflected into the

exhaust stream and the divergent flaps, the down- ly
stream corners of both upper and lower divergent
flaps were cut off to allow for up to 30 ° of yaw-flap NPR

deflection. This divergent flap cutout was necessary (NPR)d
for hinge locations upstream of the exit plane and

for the lower divergent flaps on the pitch-vectored

nozzles for the hinge location at the exit plane. This Pa
investigation studied the impact of varying the nozzle

pitch vector angle, throat area, yaw-flap hinge loca- Pt,j

tion, yaw-flap length, and yaw-flap deflection angle Rj
on nozzle internal performance characteristics. High-
pressure air was used to simulate the jet exhaust at Tt,j

nozzle pressure ratios up to 7.0, and there was no
wi

external flow (the Much number was 0).

Symbols

All forces (with tile exception of resultant gross wp

thrust) and all resultant thrust vector angles are re- wt

2

ferred to the model centerline (body axis). A detailed

discussion of the data reduction and calibration pro-
cedures can be found in references 19 and 20. Defi-

nitions of forces, angles, and propulsion relationships
used in this report can be found in reference 20.

measured nozzle throat aspect ratio,

wt/ht

nominal nozzle exit area, in 2

nozzle expansion ratio

measured nozzle throat area, in 2

nozzle discharge coefficient, wp/wi

measured thrust along body axis, lbf

internal thrust ratio

ideal isentropic gross thrust, lbf,

p _ (r,,j2_n

measured normal force, lbf

resultant gross thrust, v/F 2 + F_ + F_,
lbf

resultant thrust ratio

measured side force, lbf

acceleration due to gravity

(lg _ 32.174 ft/sec 2)

nonfinal nozzle exit height, in.

nominal nozzle throat height, in.

axial length from nozzle throat to exit

station (fig. 2)

length of yaw flap (figs. 3 and 5), in.

nozzle pressure ratio, Pt,j/Pa

design nozzle pressure ratio (NPR for

fully expanded flow at nozzle exit)

atmospheric pressure, psi

jet total pressure, psi

jet gas constant, 53.3643 ft/°R

jet total temperature, °F

ideal weight-flow rate, lbf/sec,

measured weight-flow rate, lbf/sec

nominal nozzle throat width, 4.0 in.



Xe axial distance from nozzle connect

station to nozzle exit (fig. 2), 4.55 in.

Xs axial distance from nozzle connect

station to yaw-flap hinge location (also
where sidewalls end and divergent flap

cutout begins (fig. 2)), in.

xt axial distance from nozzle connect

station to nozzle throat (fig. 2), in.

_f ratio of specific heats, 1.3997 for air

@ resultant pitch thrust vector angle,

tan-1 _t_, deg

_r resultant thrust vector angle due to

combined pitch and yaw thrust vectoring,

5v,p geometric pitch vector angle measured
from model centerline (positive for

downward deflection angles), based on

average rotation of upper and lower

flaps, deg

6v,v geometric yaw vector angle, flap deflec-
tion about hinge location (positive to left

looking upstream), deg

div resultant yaw thrust vector angle,

tan -1 _, deg
x

7/r_r vectoring performance-effectiveness
parameter for simultaneous pitch and

yaw thrust vectoring,

[(Fr/fi)unvectored - (fr/Fi)vectored ] /(Sr,
per degree

r/r% vectoring performance-effectiveness
parameter for yaw thrust vectoring,

I( f r/ Fi)unvectored -- ( Fr / Fi)vectored] /1_._1,

per degree

Abbreviations:

A/B afterburning

approx, approximate

Conf. configuration

Conv. convergent

Div. divergent

Sta. model station, in.

2-D C-D two-dimensional convergent-divergent

Apparatus and Methods

Description of Static Test Facility

Model testing was conducted in the static test

facility of the Langley 16-Foot Transonic Tunnel

(ref. 19). The model was located in a large room

where the jet exhaust from a sinmlated single-engine

propulsion system was vented to the atmosphere.

This facility utilized the same clean, dry air supply
as that used in the 16-Foot Transonic Tunnel and a

similar air control system, which included valving,

filters, and a heat exchanger (used to maintain a
constant temperature in the high-pressure plenum).

(See fig. l(a).) A remotely located control room
contained the controls for the airflow valves and a

closed-circuit television to observe the model when

the jet was operating.

Single-Engine Propulsion Simulation

System

A sketch is presented in figure l(a) of the single-

engine air-powered nacelle model on which the vari-

ous nozzle configurations with pitch and yaw thrust-
vectoring capability were tested. A photograph of the

propulsion simulation system is shown in figure l(b)

with a typical unvectored, dry power 2-D C-D con-

figuration installed.

An external high-pressure air system provided
a continuous flow of clean, dry air at a controlled

temperature of approximately 85°F. The pressure

was varied during jet simulation to provide a noz-

zle pressure ratio up to 7.0 (or until balance limits

were reached). The model was secured on a dolly
mounted support strut through which the pressur-

ized air was routed. The air traveled through tubing

in the strut into a high-pressure plenum chamber.

From there the air was discharged perpendicularly

into the low-pressure plenum through eight multi-

holed, equally spaced sonic nozzles located around

the high-pressure plenum. (See fig. l(a).) This air-

flow system was designed to minimize any forces in-

curred during the transfer of axial momentum as the
air is passed from the nonmetrie (not on the balance)

high-pressure plenum to the metric (on the balance)
low-pressure plenum. A pair of flexible metal bel-

lows (shown in fig. 1(c)) scaled the air system be-

tween the metric and nonmetric parts of the model

and compensated for any axial force caused by pres-

surization. The low-pressure air then passed from the

circular low-pressure plenum through a circular-to-

rectangular transition section, a multiple-orifice rec-

tangular choke plate (flow straightener), and a rec-

tangular instrumentation section, which was common
for all nozzle models tested. The instrumentation

section was common in geometry to the nozzle air-

flow entrance (nozzle connect section). All nozzle

configurations were attached to the instrumentation

section at model station (Sta.) 41.13.
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Nozzle Design

At unvectored conditions, 2-D C-D nozzles consist

of two pairs of symmetric upper and lower flaps.

The flow is compressed and accelerated at subsonic

speeds by tile convergent flaps. Once tile flow is

choked at the throat, it is expanded by the divergent

flaps. At the design nozzle pressure ratio (NPR)d ,

the flow is fully expanded at the exit plane of the

nozzle. (The static pressure at the exit is equal to tile

ambient static pressure.) The sidewalls are flat and

contain tile flow laterally. To achieve positive thrust

vectoring in the pitch plane, the divergent flaps are

rotated downward (the upper flap toward the nozzle
centerline). A schematic of a typical 2-D C-D nozzle

in the forward-thrust (no pitch) and positive pitch

thrust-vectored modes is shown in figure 2(a).

Four baseline nozzle configurations were tested.

Two of the baseline nozzles simulated a dry power

setting and two represented afterburning (A/B)

power. Both forward-thrust (no pitch) and pitch

thrust-vectored modes were examined for each power

setting. The forward-thrust (6v,p = 0°) dry power

baseline nozzle used in the current test (fig. 2(b))
had previously been investigated. (See refs. 12 (con-

figuration C1) and 13 (configuration S1).) The pitch

thrust-vectored baseline nozzle shown in figure 2(c)

had not been previously tested. It was designed us-

ing the geometry of the forward-thrust nozzle and
assumed a constant length from the center of flap

rotation at the throat plane to the trailing edge of
the divergent flap. (See fig. 2(a).) Using the geome-

try of the forward-thrust nozzle, this line was rotated

downward 20 ° from its original inclination to the hor-

izontal. Because of the design of the flap, a nominal

deflection of 20 ° caused the upper divergent flap to
be rotated downward by 19.33 ° and the lower diver-

gent flap to be rotated downward by 19.73 ° from the

common starting divergence angle of 1.17 ° . (Note

that the divergent flap length changed.) The average
of these rotations resulted in a geometric pitch vector

angle I_t,,p of 19.53 °.

The A/B power baseline nozzle (Sv,p = 0°) had
also been investigated previously with nozzle inter-

nal performance reported in references 10 (configu-
ration A1) and 13 (configuration $9). The geometry

for this nozzle is presented in figure 2(d). Similarly,

the geometry for the A/B pitch thrust-vectored base-

line nozzle (Sv,p = 20.26 °) is given in figure 2(e). The
nozzle internal performance for this configuration is

documented in references 10 (configuration A1V20)

and 13 (configuration $15). All four of the base-

line nozzles had full divergent flaps and sidewalls

that ended at the (unvectored) nozzle exit plane,
that is, (xs - xt)/Is = 1.00. The reduction in mea-

sured throat area from the forward-thrust nozzles to

the pitch-vectored nozzles (dry and A/B power) was
caused by changes in the nozzle internal geometry

due to rotation of tile divergent flaps. As noted in fig-

ures 2(b) to 2(e), each baseline nozzle geometry had

three derivatives corresponding to the three hinge lo-

cations upstream of the exit plane. This was neces-

sary because of the varying amount of divergent flap

cutout associated with each hinge location.

In this investigation, thrust vectoring in the yaw

plane was accomplished by deflecting full-sidewall-

height yaw flaps about a vertical hinge line. As
shown in figure 3, one flap was vectored into the

internal exhaust flow and the other flap was vectored

the same amount away from the exhaust. The yaw

flaps were tested at four hinge locations illustrated in

figure 4, starting at the nozzle exit (Sta. 45.68) and
progressing upstream in equal increments. The non-

dimensional term (xs- xt)/ls describes this yaw-

flap hinge location as a percentage of the nozzle

divergent flap length, where (x_- xt)/1._ = 1.00

denotes the hinge at the nozzle exit, (x.s - xt)/ls = 0

denotes the hinge at the throat t)lane of the dry power

_v,p = 0 ° baseline nozzle, and the other two values
(0.67 and 0.33) denote locations between the exit

and the throat. Although the axial positions of the

four hinge locations (Xs) were fixed throughout the

test, the A/B power nozzles had a different throat

location (zt = 2.3.5 in. as seen in fig. 2((t)). The

difference in throat location caused a change in the

value of ls because the exit plane location was fixed.

Therefore, the values of hinge location for the A/B
power nozzles are slightly different from the values

for the dry power nozzles. (See fig. 4.) For the
A/B power nozzles, the values of hinge location were

(xs - xt)/Is = 1.00, 0.66,0.31, and -0.03. A hinge

location of -0.03 implies that the hinge is located
just upstream of the throat plane.

In order to allow for yaw-flap deflection at the

three hinge locations upstream of the exit plane,

portions of both upper and lower divergent flaps had
to be cut out (fig. 4). This cutout was made on

both sides of the upper and lower flaps to allow

for both positive and negative yaw vector angles.
The cutout started at the edge of the upper and

lower flaps where the yaw-flap hinge was located

(at the end of the sidewall) and ended at the exit

plane. Enough divergent flap was removed to allow

for a maximum of 30 ° of yaw-flap deflection in either

direction at both forward-thrust and pitch thrust-
vectored conditions. (It is important to note that the

cutout, once designed into a full-scale nozzle, would

not vary. The aircraft, would always fly with this
divergent flap cutout, and the yaw-flap length would
remain fixed. Installed performance studies would be



requiredto fix the yaw-flaphingelocationandflap
length.)

Threedifferentlengthsof sidewallyawflapswere
usedin this investigation(fig. 5), tile longestof
whichwasequalto theaxiallengthfromthethroat
to the exit planeof the dry powerbaselinenozzle
(ly = 2.27in.). (In this case,l_Jl_ = 1.00 for dry
power, and 1.03 for A/B power.) The second and

third sets were two-thirds (ISls = 0.67 for dry power
and 0.69 for A/B power) and one-third (lu/ls = 0.33

for dry power and 0.34 for A/B power) the length

of tile long set, respectively. Each of these three

different sets of yaw flaps could be vectored at yaw

angles of 0 °, -20 °, and -30 ° . Not all yaw flaps
were tested at each hinge location. Table I shows the

combinations of yaw-flap hinge location, flap length,

and flap deflection angle for which data are available.

Figure 6(a) shows photographs of four dry power
nozzle configurations with the same yaw-flap length

(ly/1._ = 0.67 and hv,y = 0°) installed at the four
different hinge locations. Sketches of these config-

urations are presented in figure 6(b) and are typi-

cal of sketches used throughout the data presenta-
tion to aid the reader in recognizing the yaw-flap

hinge location, flap length, and flap deflection an-

gle. Figure 7 shows photographs of some typical yaw-

vectoring configurations with the trailing edge of the

yaw" flaps ending at the exit plane. Three hinge lo-
cations and yaw-flap lengths are shown.

Instrumentation

The weight-flow rate of the high-pressure air

supplied to the model was deternfined from tem-

perature and pressure measurements in the high-

pressure plenum and was calibrated with standard
axisymmetric nozzles. (See ref. 21.) Nine total-

pressure probes were attached to three rakes located
in the instrumentation section. A thermocouple was

also positioned in the instrumentation section to
measure the jet total temperature. (See fig. l(a).) An

area-weighted average of the nine jet total-pressure
measurements was used for the jet total pressure.

Measured values of the temperature and pressure in

the instrumentation section, along with the measured

throat area, were used to compute the ideal weight-
flow rate. Details of the measured and ideal weight-

flow rate calculations can be found in reference 20.

A six-component strain-gauge balance was used
to measure the forces and moments on the model

downstream of station 20.50. The balance-moinent

reference center was located at station 26.54. The

accuracy of force balance readings is quoted at

±0.5 percent of full-scale values. The full-scale val-

ues for the balance used in this investigation are as

follows: axial force, 500 lb; normal force, +500 lb;

and side force, ±350 lb.

Data Reduction

All data were recorded on magnetic tape and

taken in ascending order of Pt,j. Fifty frames of data,
taken at a rate of 10 frames per second, were used to

compute an average steady-state value for each data

point.. The basic performance parameters used in

the presentation of results were internal thrust ratio

F/Fi, resultant thrust ratio Fr/Fi, resultant pitch

thrust vector angle 5p, resultant yaw thrust vector

angle 5q, and discharge coefficient Cd.
Tile internal thrust ratio F/Fi is tile ratio of

measured nozzle thrust along the body axis to ideal

thrust, where ideal thrust is based upon measured

weight-flow rate wp, jet total temperature Tt,a, and
nozzle pressure ratio NPR. The balance axial-force

measurement, from which the actual nozzle thrust F

is subsequently obtained, is initially corrected for bal-

ance interactions. Although the bellows arrangement

was designed to elinfinate pressure and momentunl
interactions with the balance, small bellows tares on

the six balance compoimnts still exist. These tares

result from a small pressure difference between the
ends of the bellows when internal velocities are high

and from small differences in the spring constants of
the forward and aft bellows when the bellows are

pressurized. These bellows tares were deternfined

by testing standard axisymmetric calibration nozzles
with known performance over a range of expected

longitudinal and lateral forces and moments. The
balance data were then corrected in a rammer simi-

lar to that. discussed in reference 7 to obtain thrust

along tile body axis F, normal force FN, and side

force F5,. The resultant thrust ratio Fr/F'i, resultant

pitch vector angle 5p, and resultant yaw vector angle

5y were then determined from these corrected bal-
ance data. A more detailed discussion of the data

reduction process can be found in references 19 and
20.

The resultant thrust ratio Fr/Fi is tile resultant

gross thrust divided by the ideal isentropic gross

thrust. Resultant gross thrust is obtained froin

the measured axial (thrust along the l)ody axis),
normal, and side components of the jet resultant

force. As long as the exhaust flow is unvectored
in either the longitudinal or lateral direction, F/Fi

and Fr/F i are equal. From the definitions of F and
Fr, it is obvious that the thrust along the body

axis F includes losses that result fi'om turning the

thrust vector away from the axial direction, whereas

the resultant gross thrust Fr does not. The losses
included in both thrust terms F and Fr are caused

by friction and pressure drags associated with the



thrust-vectoringhardware.Resultantthrust vector
anglesin the longitudinal(pitch)plane6pand the
lateral(yaw)plane5y are presented for evaluating the
exhaust-flow turning capability of the various thrust-

vectored nozzle configurations.

The nozzle discharge coefficient C d is the ratio

of measured weight-flow rate to ideal weight-flow

rate, where ideal weight-flow rate is dependent upon

jet total pressure Pt,j, jet total temperature Tt,j,
and measured nozzle throat area At. The nozzle

discharge coefficient reflects the ability of a nozzle to

pass weight flow and is reduced by any momentum

and vena contracta losses (ref. 22).
In order to compare the results from the current

investigation with the results obtained from previous

investigations, several thrust-vectoring performance-

effectiveness parameters defined in reference 16 were

used. These parameters, r]rby (for pure yaw thrust-

vectoring concepts) and 6r and rlr_T (for simultane-

ous pitch and yaw thrust-vectoring concepts), were

computed from data obtained as close to (NPR)d as
possible. They serve as figures of merit by indicating

the effectiveness of a thrust-vectoring concept; that
is, they provide a value for the loss in resultant thrust

ratio per degree of resultant thrust vector angle.

6_,,p = 20.26°:
(xs - xt)/ls = 1.00 ......... 22

(Xs - xt)/l._ = 0.66 ......... 23

(xs - xt)/ls = 0.31 ......... 24

(xs - xt)/Is = -0.03 ........ 25

Summary of effects of yaw-flap deflection on

dry power nozzle ............ 26

Effect of varying yaw-flap length on nozzle

internal performance:

_v,y = 0° ............... 27

_v,y = -30 ° .............. 28

Effect of varying yaw-flap hinge location on

nozzle internal performance

(6v,y = -30 °) ............. 29

Summary of effects of yaw-flap length and
hinge location on nozzle internal

performance (6v,y = -30 °) ........ 30

Effect of pitch thrust vectoring on nozzle
internal performance .......... 31

Comparison of nozzle yaw thrust-vectoring

concepts ............... 32

Comparison of combined pitch and yaw

thrust-vectoring concepts ........ 33

Results and Discussion

Presentation of Results

A list of configurations along with an index to

the internal performance data figures are contained

in table I. Performance comparisons are presented in

the following figures:

Figure

Baseline nozzle internal performance .... 8

Effect of divergent flap cutout on nozzle

internal performance .......... 9
Effect of yaw-flap deflection on internal

performance for

Dry power nozzle:

t_v,p = 0°:
(xs - xt)/ls = 1.00 ......... 10

(Xs - xt)/l._ = 0.67 ......... 11

(xs - xt)/ls = 0.33 ......... 12

(xs - xt)/ls = 0 .......... 13

6v,p = 19.53°:
(xs -- xt)/ls = 1.00 ......... 14

(Xs -- xt)/ls = 0.67 ......... 15

(xs - xt)/ls = 0.33 ......... 16

(xs -- xt)/Is = 0 .......... 17

Afterburning power nozzle:

6v,p = 0°:
(Xs - xt)/Is = 1.00 ......... 18

(Xs - xt)/ls = 0.66 ......... 19

(Xs - xt)/ls = 0.31 ......... 20
(Xs -- xt)/l._ = --0.03 ........ 21

Baseline Nozzles

The basic data for the four baseline nozzles

(dry and A/B power, both forward-thrust and pitch
thrust-vectored modes) are presented in figure 8. The

internal thrust ratio, resultant thrust ratio (for the
pitch-vectored nozzles only), discharge coefficient, re-

sultant pitch thrust vector angle, and resultant yaw
thrust vector angle are shown as a function of noz-

zle pressure ratio. The peak thrust performance of

the forward-thrust dry power nozzle (see fig. 8(a))
occurred near a design nozzle pressure ratio of 3.0

((NPR)d = 2.98). Recall that the design nozzle pres-

sure ratio is the nozzle pressure ratio for fully ex-

panded flow inside the nozzle. As mentioned ear-

lier, the forward-thrust dry power baseline nozzle

had been tested previously (refs. 12 and 13). Re-

sults of the current investigation are compared with

those of reference 13 in figure 8(a). Results from

reference 12 are similar. The discharge coefficient

is slightly higher than previous values but is gener-

ally within 0.7 percent. (Accuracy is typically within

=t=0.5 percent.) The internal thrust ratio duplicated
earlier data. As expected, both resultant thrust vec-

tor angles (6p and 5y) remain near 0° over the range
of nozzle pressure ratio tested.

The internal performance data for the dry power

pitch-vectored baseline nozzle are presented in fig-
ure 8(b). (Note that this baseline had not previously
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beentested.) Thepeakof the resultantthrust ra-
tio curveoccurredbetweena nozzlepressureratio
of 4.0and5.0 ((NPR)d= 4.42). A comparison of

these two baseline nozzles (vectored and unvectored)

shows less than a 0.5-percent decrease in peak resul-

tant thrust ratio because of turning losses associated

with pitch vectoring. (For tile forward-thrust nozzle,

the internal thrust ratio equals the resultant thrust

ratio.) Static pressure data from several earlier inves-

tigations on pitch thrust-vectored 2-D C-D nozzles
have shown that the throat plane rotates from the

unvectored position to a location where it is nearly
perpendicular to tile upper divergent flap, where the

minimum geometric cross-sectional area occurs. (See

the geometry in fig. 2 and also see refs. 7 and 11.)
Consequently, the internal flow is turned at subsonic

speeds which proves to be efficient, as can be seen by

the small loss in peak resultant thrust ratio between
these two nozzles.

At low nozzle pressure ratios, the resultant pitch

vector angle for the dry power pitch-vectored baseline

nozzle is higher than the design pitch vector angle of
19.53 ° . Overturning at low nozzle pressure ratios is

typical of pitch thrust-vectored 2-D C-D nozzles at.

dry power operating conditions. This turning an-

gle decreases with increasing pressure ratio to val-

ues below the design ("metal") angle. As noted in

reference 10, this change in thrust angularity with

increasing nozzle pressure ratio is common in non-

axisymmetric nozzles whenever one flap is longer

than the other with respect to tile flow centerline.

(See fig. 2(e).) This difference in flap length pro-

rides surfaces of unequal length for the flow to ex-

pand upon so that one side of the internal flow is

contained longer by a flap while the other side of the
exhaust flow is unbounded.

There was a 1.5-percent decrease in discharge co-

efficient due to pitch vectoring the dry power nozzle
from 0° to 19.53 °. These losses are associated with

changes in throat position when the nozzle was pitch
vectored.

Both A/B power baseline nozzles had been tested

previously, and their internal performance is docu-
mented in references 10 and 13. Because of limita-

tions on the force balance, data were not obtained for

values of NPt/at and above peak performance levels.

The internal performance of the A/B power forward-

thrust baseline nozzle is presented in figure 8(c) and
compared with results from reference 13. Although

(NPR)d = 4.54 for this nozzle, data presented at the
maximum NPR of 4.5 do not indicate that the perfor-

mance peak has been attained. In fact, results from

reference 13 indicate that peak performance occurred

at NPR = 5.0. Results from the current investiga-

tion for internal thrust ratio and discharge coefficient

agree with those of reference 13. As expected, both

resultant thrust vector angles remain near 0° for the

NPR range tested.

The internal performance of the A/B power pitch-

vectored baseline nozzle is compared with results

from reference 10 in figure 8(d). Data below NPR

= 4.0 are similar, but slight differences occur in

F/Fi, Fr/Fi, and (hp for the data points above NPR
= 4.0. As discussed in reference 10, this nozzle

experiences flow" separation on the lower divergent

flap at nozzle pressure ratios below design ((NPR)d = .

6.33), and reattaehment (which occurs between NPR
= 3.5 and 4.0) of the exhaust to the lower flap did

not occur at the same pressure ratio as before. A

difference of approximately 1 percent, in F/F i and 1°

in @ can be seen in figure 8(d). It is likely that this
flow separation on tile lower divergent flap at a low

NPR is caused in part by the large angle that the flow

is turned on the lower flap. As the pressure gradient

increases between the upper and lower divergent flaps

with increasing NPR (see ref. 10), the internal flow
is forced to turn more in the direction of the lower

divergent flap surface. Between an NPIt of 3.5 and

4.0, the flow reattaches to the lower flap resulting

in larger turning angles. This reattachment causes

a large drop in F/Fi (over 5 percent) because the

exhaust flow is being turned farther away from the
axial direction. Concurrently, there is an increase of

7° in @. As expected, resultant yaw vector angles
remain near 0° over the range of pressure ratios
tested.

Effects of Divergent Flap Cutout

The effects of divergent flap cutout on nozzle

internal performance for forward-thrust and pitch

thrust-vectored nozzles are presented in figures 9(a)

and 9(b) for dry power configurations and in fig-

ures 9(c) and 9(d) for A/B power configurations. The
hinge location has been successively moved back to

the throat while holding the yaw-flap trailing edge at

the exit such that. [(xs - xt)/Is] + l_Jls = 1.00. (See
the symbol key in fig. 9.) Note that the yaw flaps
were undeflected.

Dry power nozzles. As discussed previously,
hinge locations upstream of the exit plane required

a cutout of the downstream corners of the divergent

flaps for yaw-vectoring capability. Moving the hinge

back to (xs - xt)/Is = 0.33 had no effect on nozzle
internal thrust performance. However, locating the

hinge at the throat ((x_ - xt)/ls = 0) resulted in a

0.5-percent loss in internal thrust ratio near the base-

line (NPR)d of 2.98. This loss in thrust ratio in-

creases as nozzle pressure ratio increases and is due to

a portion of the exhaust flow expanding through the
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cutoutin thedivergentflaps(lessefficiently).Moving
thehingebackto the throat (denotedby triangular
symbols)alsoresultedin a decreasein theeffective
expansionratio A_./At since the peak performance is

occurring at a lower nozzle pressure ratio. Therefore,

at higher values of NPR, this configuration is also ex-

periencing increased underexpansion losses because

it is operating farther from the design nozzle pres-
sure ratio. These results are similar to those of ref-

erence 2a for an axisymmetric convergent-divergent

nozzle with slots in the divergent flaps. It is impor-

tant to note that these forward-thrust configurations

represent the nozzle position during cruise (which is

generally the majority of an aircraft flight profile).

As always, performance/weight trades exist, and the

adverse effect of a small loss in thrust ratio (as mea-

sured for the largest cutout) due to divergent flap

cutout might be offset by a decrease in the nozzle

weight and internal nozzle surface area to be cooled.

A decrease in discharge coefficient of 0.6 percent

can be seen from the baseline (circular symbols) to

configurations with divergent flap cutout (yaw flaps

hinged upstream of the exit). It is not understood

what caused this decrease in Cd, but two possible
reasons are presented below. The decrease in C_t

might be due to a snmll change ill geoInetry upstream

of the nozzle throat in the convergent region of
the nozzle. Evidence of this can be seen in tile

repeatability of data for the three configurations with

increasing divergent flap cutout. However, removal of
the downstream corners of the divergent flaps might

have also affected C d by altering the position and,
therefore, the area of the throat.

Tile pitch thrust-vectored configurations

(fig. 9(b)) show a decreasing trend in resultant thrust

ratio due to increasing divergent flap cutout. Locat-

ing the yaw-flap hinge at (xs - xt)/ls = 0 results in a
2.4-percent loss in resultant thrust ratio at a nozzle

pressure ratio of 4.0 (fig. 9(b)). Again, it is proba-

ble that these losses are occurring because a portion

of the exhaust flow is expanding through the cutout

in the divergent flaps, and the nozzle has less diver-

gent flap surface area on which the expanding flow

can produce thrust. It is again evident that tile effec-

tive expansion ratio has decreased because the nozzle

pressure ratio at which peak performance occurs has
decreased.

Increased divergent flap cutout causes increased

internal thrust ratio and decreased resultant pitch

vector angle at low nozzle pressure ratios (and also

decreased thrust ratio and increased vector angle

at higher nozzle pressure ratios) when compared
with results from the baseline nozzle. The results

from reference 11 for a pitch-vectored nozzle with

a similar geometry (to the current baseline nozzle)

show similar data trends, but the effect was caused

by sidewall cutback instead of divergent flap cutout.
TILe increased thrust ratio at lower nozzle pressure

ratios in reference 11 was due in part to a slight
increase in static pressure due to sidewall cutback

that was greater on the lower divergent flap than

on the upper flap. In this configuration, as is the

case in the current, investigation, at positive pitch-

vectored conditions (lower flap down) tile upper flap

was a forward-facing surface and the lower flap was

a rearward-facing surface. The increase in pressure

on the upper flap caused a loss in axial force that

was overcome by a gain in axial force due to a larger

increase in pressure on the lower flap. The result was

an overall increased internal thrust ratio. This slight

pressure increase also caused a reduction in normal

force which, when coupled with the increased axial

force, produced a lower resultant pitch thrust vector

angle. Although no static pressures were measured in

the current investigation, the results of reference 11

are similar to those presented in figure 9(b), and it
is possible that this same pressure phenomenon is

occurring at low nozzle pressure ratios because of

venting of the exhaust flow.

In the current investigation, the loss in axial force

at higher nozzle pressure ratios due to a portion of

the flow expanding through the divergent flap cutout
results in a reduced internal thrust ratio. However,

this loss in axial force, when coupled with an increase

in nornml force, gives a larger resultant pitch thrust

vector angle. The reason for this increase in normal
force is not known.

There is very little change in discharge coefficient

due to the divergent flap cutout of the pitch-vectored

nozzle for hinge locations downstream of the throat.

The yaw-flap hinge location at (x._ -xt)/1._ = 0

is believed to be upstream of the baseline pitch-

vectored nozzle throat, and consequently there is
a change in C_t for this configuration as seen in

figure 9(b). This increase in C d is probably a result

of differences in measured and actual physical throat
areas. It is likely that the throat plane for this

configuration is not as skewed to the nozzle centerline

(as the baseline throat was) because of ventilation

through the cutout in the upper divergent flap. As

a result, the actual throat area is probably larger

than the measured value of At used to compute w i.

Therefore, Cd may be artificially high. If the true

physical throat area could be measured, C d would
likely be lower than the values shown.

A/B power nozzles. The effect of the divergent

flap cutout on unvectored A/B nozzle internal perfor-

mance is presented in figure 9(c). As discussed pre-

viously (and noted in several references), increasing



nozzleventilation,by either sidewall cutback or di-

vergent flap cutout (as in this paper), tends to reduce

tile effective expansion ratio. At lower values of NPR,

ovcrexpansion losses are simply reduced by vent.ila-
tion. Therefore, the highest internal performance (at.

lower values of NPR) wouht be expected for the con-

figuration with the largest cutout. Conversely, at

higher values of NPR the most ventilated configu-
rations are operating farther from the design noz-

zle pressure ratio; increased underexpansion losses
drive these configurations to lower performance lev-
els. A close exanfination of the internal performance

data would also suggest that. peak performance lev-

els decrease slightly with increasing cutout. These

losses are probably associated with local changes in

flap static pressure distribution resulting from flap

cutout. A (tivergent flap cutout of the forward-thrust

A/B power nozzle for a hinge location slightly up-
stream of the throat resulted in a loss of approxi-

mately 1 percent when compared with the baseline

at an overexpanded nozzle pressure ratio of 4.5.

Pitch-vectored nozzle performance for A/B power

configurations with varying amounts of divergent flap

cutout is presented in figure 9((t). All data are at

overexpanded flow conditions_ and therefore these

configurations have not reached their peak perfor-

mance levels. Data trends for F/F i and @ at an

NPR below that for peak performance indicate that

increasing flap cutout causes an increase in F/F_ and

a decrease in @ when compared with results from the
baseline nozzle. Flap cutout corresponding to a hinge

location of -0.03 probably prevents reattachment of

the separated flow on the lower divergent flap (as dis-

cussed earlier and as indicated by the lower values of

@). At NPR = 4.0 (near where reattachment occurs
on the baseline nozzle), this continued flow separa-

tion leads to increased F/Fi and decreased /_p be-
cause the exhaust is not being turned away from the
axial direction as nmch as before. Resultant thrust

ratios at a nozzle pressure ratio near 5.0 (the nozzle

is overexpanded at this NPIt) are not affected by flap

cutout.

Although a slight increase in discharge coefficient

can be seen for this hinge location upstream of the

throat, values are generally within data-measurement

accuracy.

Effects of Yaw-Flap Deflection

Performance characteristics for yaw thrust-

vectored configurations and combined pitch and yaw
thrust-vectored configurations arc presented in fig-

ures 10 to 17 for the dry power nozzles and in fig-

ures 18 to 25 for the A/B power nozzles. Each figure

presents the effects of yaw-flap deflection on nozzle

internal performance data for a constant hinge loca-

tion with yaw flaps of different lengths.

Dry power nozzles. In general, both internal

thrust ratio F/Fi and resultant thrust ratio Fr/F_

were significantly decreased by yaw-flap deflection.

The losses experienced in F/Fi are certainly expected

because flow is being directed away from the axial

direction by the yaw flaps. Losses in Fr/Fi indicate

that the yaw flaps are not, 100 percent efficient at

turning the exhaust flow. It is important to note

that the magnitude of these turning losses did not

necessarily increase with increasing b_,,y. In fact. for

configurations with the yaw faps hinged upstream of

the exit, the 6_,y = -30 ° deflections generally pro-

vided higher resultant thrust ratios than the -20 °

yaw-flap-deflection cases. (See fig. ll(a), for exam-

ple.) Further insight, into the reasons for this increase

in performance can be gained by examination of the
nozzle discharge coefficient, data.

For all post-exit yaw-vectoring situations (figs. l0

and 14) and one pitch thrust-vectored configuration

with the yaw-flap hinge located just upst.ream of

the exit (fig. 15), the nozzle discharge coefficient

was independent of yaw-flap deflection. However, in

general, yaw-flap (tcfleetion about a hinge location

ui)stream of the exit plane caused losses in nozzle

discharge coefficient. (See fig. 13. for example.)

Losses in C d ranged from 0 to 3 percent for the 5_,y =
-20 ° cases and up to 14 percent when the yaw flap

was deflected -30 °. These losses in C d for the yaw-

vectored configurations were caused t)y a shift in the

physical throat location from the expected location

(fig. 2(b)) to a position farther downstream and
skewed relative to the nozzle ecnterline. Obviously,

the effective physical throat area was nmch smaller
than the nominal unvectored throat area used t.o

compute ideal weight-flow rate. For a given nozzle

pressure ratio, a smaller effective throat area reduces

the amount of weight flow that can pass through the

throat. Therefore, the discharge coefficient, that is,
the ratio of measured to ideal weight-flow rate, was

decreased.

As a result of this rotation (skewing) of the throat

plane, it is likely that an increased amount of the
internal flow was turned at subsonic speeds. Since

subsonic flow turning is more efficient than super-

sonic flow turning (and based on the nozzle dis-

charge coefficient data shown in figs. 10 to 17), it is

believed that the -30 ° yaw-flap deflection provides
much more subsonic flow turning (in the side-force

direction) than the -20 ° deflection. As a result, the

5v,y = -30° ease could be expected to be the more
efficient yaw-vectoring ease (higher Fr/Fi).



In addition, increasing the yaw-flap deflection
from -20 ° to -30 ° should eliminate some flow ven-

tilation (present on the _Sv,v = -20 ° case) out of the

gap between the yaw flap and the upper and lower

divergent flaps. This ventilation, as discussed pre-
viously, is believed to result in some thrust loss. It

also appears that deflection of the yaw flaps to -30 °

resulted in a decrease in the effective expansion ra-

tio (Ae/At) of a yaw thrust-vectored configuration

because peak performance (Fr/Fi) for this case gen-
erally occurred at a lower nozzle pressure ratio than

with the 6v.y = 0° configuration.

Resultant pitch and yaw thrust vector angles are

also presented in figures 10 to 17. As seen, yaw-flap
deflection had little effect on resultant pitch vector

angle for the unvectored configurations (_v,p = 0°)
and the post-exit, yaw-flap pitch-vectored configura-

tions (figs. 10 to 14), but it caused decreases in 6p
on the combined pitch and yaw vectoring cases with
hinge locations upstream of the exit. These decreases

became larger as _Sv,ywas increased. It would appear

that the yaw flaps are generating side force at the ex-
pense of both normal force and axial force on these

combined pitch and yaw thrust-vectored configura-

tions. The yaw flaps generally do provide the last

flow-turning mechanism to affect the flow, and hence

the above result might be expected. Resultant yaw

vector angle was obviously affected by yaw-flap de-

flection angle. Increases in 6v,y did provide increased

6y. In all cases, however, measured yaw vector an-

gles were less than the geometric deflection angles.

The largest resultant yaw vector angle (-24.3 ° ) is
shown in figure 17(c) for a combined pitch and yaw

thrust-vectored configuration with a yaw-flap hinge

location of (xs - xt)/ls = 0 and a yaw-flap length of

ly/ls = 1.00.

A/B power nozzles. Results similar to the dry

power nozzle data can be seen for the A/B power

configurations in figures 18 to 25. However, it is im-

portant to note that all data for these A/B configura-
tions are at overexpanded flow conditions because of

limitations on the force balance. In general, yaw-flap

deflection caused losses in internal thrust ratio F/F i
and resultant thrust ratio Fr/Fi at nozzle pressure

ratios below design. Several configurations showed

an increase in Fr/Fi (up to 2 percent) because of

yaw-flap deflection at overexpanded nozzle pressure

ratios. (See fig. 20.) This result might be due in part

to a decrease in the effective expansion ratio of the
nozzle, thereby decreasing the overexpansion losses

since the nozzle is operating closer to peak Fr/Fi.

Additionally, configurations tested with yaw-flap de-

flection angles of -20 ° and -30 ° (figs. 21, 24(b), and

25(c)) that also showed a decrease in nozzle discharge

coefficient indicated an increase in Fr/F i as the flap
was deflected from -20 ° to -30 ° . This result is at-

tributed to an increase in the amount of subsonic flow

turning in the side-force direction because of a skew-

ing of the nozzle throat plane (discussed previously).

Pitch thrust-vectored A/B configurations exhib-

ited changes in resultant pitch vector angle because of

yaw-flap deflection. In general, @ for the yaw-flap-
deflected configurations was increased at low NPR

and decreased at high NPR when compared with the

undeflected yaw flaps. In figure 25(c), data at NPR =

1.8 show an increase of 5 ° in the resultant pitch vec-

tor angle associated with deflection of the yaw flaps

from 0° to -30 °. The generation of side force (by

yaw-flap deflection) resulted in an increase in mea-
sured normal force and a decrease in measured axial

force. Again, the reasons for the increase in normal
force are not known.

Resultant yaw vector angle increased with in-

creasing yaw-flap deflection, as expected. However,

resultant yaw vector angle was always less than the

geometric metal (design) angle. The largest resultant

yaw vector angle (-20.9 ° ) is shown in figure 21 for
a yaw-vectored configuration (no pitch) with a hinge

location (Xs - xt)/ls of -0.03 and a yaw-flap length

ly/ls of 1.03.

Figure 26 summarizes the effects of yaw-flap de-

flection on resultant thrust ratio and resultant pitch

vector angle (pitch-vectored nozzles only) for dry

power configurations from the current investigation

at a constant nozzle pressure ratio. Data are shown

at values of NPR near design for undeflected and
fully deflected yaw flaps. (No data are shown for

yaw-flap deflections _v,y of -20 ° because of the lack

of configurations tested. The A/B power configura-
tions have been intentionally left out because of a

lack of data at nozzle pressure ratios near peak per-
formance.) For all configurations shown, losses expe-

rienced in Fr/F i due to yaw-flap deflection decreased

as the yaw-flap hinge location was moved upstream

from the exit plane toward the throat (decreasing val-
ues of (Xs -xt)/Is). This result might be due to a de-

crease in the velocity of the flow that is being turned
in the side-force direction as the hinge location is

moved upstream. Note the significant resultant

thrust ratio losses on all the post-exit yaw-vectoring

configurations ((Xs -xt)/Is = 1.00). In general, dip
was decreased by yaw-flap deflection on dry power

pitch-vectored nozzle configurations at an NPR near
design (fig. 26(b)).

Effects of Varying Yaw-Flap Length and

Yaw-Flap Hinge Location

The effects of increasing the length of undeflected

yaw flaps on the thrust and turning performance of
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forward-thrustandpitch thrust-vectorednozzlesat
dryandA/B powerarepresentedin figure27.A con-
stanthingelocationof (x_- xt)/1._ = 1.00 has been

chosen as representative of the four hinge locations

investigated to illustrate the effects of increasing the

yaw-flap length. Note that data for these configura-

tions have been presented earlier in the section enti-
tled "Effects of Yaw-Flap Deflection." Increasing the

length of the undeflected yaw flaps held at a constant

hinge location caused little or no change in the noz-

zle internal performance characteristics. Losses were

less than 0.5 percent for those configurations shown

in figures 27(a), 27(b), and 27(c), and they are con-
sidered to be within measurement accuracy of the

balance. Only the data shown at a nozzle pressure

ratio of 4.0 for the A/B power pitch-vectored nozzle

(fig. 27(d)) exhibit, a significant change in nozzle per-
formance because of increasing tile yaw-flap length.

It is obvious that the flow reattachment phenomenon

on the lower divergent flap of this nozzle (discussed

earlier) has been delayed. It is highly likely that

the differences are simply a function of the reattach-
ment location. Note that the data at other pres-

sure ratios presented in figure 27(d) show less than

a +0.5-percent change due to increased yaw-flap

length. For this nozzle, increasing the length of unde-

fleeted yaw flaps has no effect on discharge coefficient

or resultant yaw thrust vector angle.

Nozzle thrust performance and resultant thrust

vector angles are presented in figure 28 for vary-

ing the yaw-flap length at a constant hinge location

for yaw thrust-vectored nozzles (yaw flaps deflected

to -30°). As before, dry and A/B power nozzles

with and without pitch thrust vectoring are shown

for a constant hinge location ((xs - xt)/ls = 0.33

for dry power and 0.31 for A/B power). Data for

the hinge location shown are typical (of the other

hinge locations tested) and indicate that increasing
the yaw-flap length decreased the internal and re-

sultant thrust ratios. Increasing the flap length al-

ways increased the resultant yaw vector angle. These
trends are due to an increase in side force and a de-

crease in axial force associated with increased yaw-

flap length. (This is true for all test data at or near

NPR = 4.0.) Increasing yaw-flap length at the three

hinge locations upstream of the exit decreased 5p on

the dry power configurations. Losses in discharge co-
efficient appear to be more a function of hinge loca-

tion than of yaw-flap length, as is shown in figure 29.

Figure 29 presents data for varying the hinge lo-
cation of a constant-length yaw flap on yaw-vectored

nozzle thrust performance and resultant thrust vec-

tor angles for dry power and A/B power nozzles with

and without pitch thrust vectoring. A flap length

ly/ls of 1.00 for dry power configurations (1.03 for

A/B power configurations) has been chosen as repre-
sentative of the three lengths investigated. Configu-

rations with yaw flaps deflected about a hinge at the

exit plane exhibited the lowest, resultant thrust ratio

and lowest resultant yaw vector angle. For all config-

urations tested, moving the yaw-flap hinge upstream

of the exit plane reduced the losses in resultant thrust

ratio Fr/Fi due to yaw vectoring. These losses are

due in part. to the turning of supersonic flow. As the

hinge location is moved upstream from the exit, the

flow is turned at a lower supersonic velocity (or pos- .

sibly at subsonic speeds when the throat is skewed

to the nozzle centerline), and therefore flow-turning

losses caused by the vectored yaw flaps decrease. As

discussed previously, a result of the reduction in ef-

fec,tive throat area (due to the skewing of the throat

plane) is tile decrease in discharge coefficient seen in

figure 29. This loss in discharge coefficient occurs

for all three yaw-flap lengths on both dry and A/B

power nozzles.

Figure 30 summarizes resultant thrust ratio and

resultant thrust vector angles (except that 5p is not

shown for the b_:,p = 0° configurations) as a func-

tion of yaw-flap hinge location for the three different

yaw-flap lengths. (Note that the data presented here
constitute one point at a single nozzle pressure ratio

for each yaw thrust-vectored configuration tested in
this investigation. Although dry power data are pre-

sented at an NPR close to peak performance, A/B

power data are at. overexpanded conditions. How-

ever, the data are the highest NPR data available

on the A/B power configurations.) Internal perfor-

mance data are presented in figures 30(a) and 30(b)

for tile dry power nozzle and in figures 30(c) and

30(d) for the A/B power nozzle.

Conclusions from figure 30 are generally made

from dry power data since not. enough A/B power

data are available for all the trends to be compared.

Yaw vectoring from flaps deflected about a hinge

location at the exit ((Zs -,rt)/ls = 1.00) causes

larger losses in resultant thrust ratio and produces

lower resultant yaw vector angles than vectoring

from .flaps deflected about the other three hinge

locations (upstream of the exit). It is also apparent.
that reductions in nozzle performance (Fr/Fi) as a

function of yaw-flap length are much larger for yaw

flaps hinged at the exit than for the hinge locations

upstream of the exit. Upon further inspection of

figures 30(a) and 30(b), it becomes apparent that the
maximum resultant yaw vector angle for a constant

yaw-flap length is produced by flaps that normally

have their trailing edge ending in the exit plane; i.e.,

the IJls = 0.33 flaps give maximum turning when
hinged at (zs - zt)/Is = 0.67, the ly/Is = 0.67 flaps
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givemaximumturningwhenhingedat (xs- xt)/ls =

0.33, and the ly/Is = 1.00 flaps give maximmn

turning when hinged at (x,s - xt)/ls = 0. This
would seem to indicate that for maximum thrust-

voctoring capability, the hinge location and yaw-

flap length need to be chosen in such a way that

[(x_ - xt)/ls] + ly/Is = 1.00. (See fig. 7.)

An examination of data trends for a pure yaw

thrust-vectored configuration and combined pitch
and yaw thrust-vectored configurations presented in

figures 30(a) and 30(b), respectively, leads to the fop

lowing hypothesis. A pair of yaw flaps hinged be-

tween (Xs -xt)/ls = 0.33 and 0 with the trailing
edge extending to the exit would provide a compro-

mise that would probably produce values of resultant

thrust ratio slightly lower than those of flaps hinged

at (xs - xt)/ls = 0 for a pure yaw thrust-vectored

configuration and slightly higher than those of flaps

hinged at 0 on a combined pitch and yaw thrust-

vectored configuration. This hypothetical nozzle

would, in return, generate a compromised value of
resultant pitch thrust vector angle while maintain-

ing a large resultant yaw thrust vector angle that

would be slightly lower than that of flaps hinged at

the throat. Note that in comparison with the dry

power forward-thrust baseline nozzle (no divergent

flap cutout), this hypothetical combined pitch and

yaw thrust-vectored nozzle would have a resultant

thrust ratio that is 2 to 3 percent below that of the

forward-mode nozzle and yet be capable of generat-
ing approximately 14° of resultant pitch thrust vector

angle and -20 ° of resultant yaw thrust vector angle.

Although only limited data exist for A/B power

nozzles (figs. 30(c) and 30(d)), it does appear from

observations of figure 30(d) that the "best" config-
uration at A/B power also has a hinge location be-

tween (x_ - xt)/ls = 0.31 and -0.03.

The effect of pitch thrust vectoring on yaw-

vectored configurations is summarized in figure 31,
where resultant thrust ratio and resultant yaw thrust

vector angle are shown as a function of yaw-flap hinge
location. Data are shown at a nozzle pressure ra-

tio near peak performance for dry power configura-

tions (NPR near design) in figure 31(a) and at over-

expanded conditions for A/B power cases (NPR less

than design) in figure 31(b). Pitch vectoring a yaw-

vectored nozzle decreased the resultant thrust ratio,

and this decrease was larger for the A/B nozzles.
Pitch thrust vectoring had very little effect on the

resultant yaw vector angle. Recall from the previous

discussion, however, that yaw-flap deflection gener-

ally decreased the resultant pitch vector angle. Ide-
ally from a controls standpoint, it would be desir-

12

able to have no cross coupling between the thrust-

vectoring processes.

Comparison of Thrust-Vectoring Concepts

The performance of pure yaw thrust vectoring (no

pitch) and combined pitch and yaw thrust-vectoring

dry power configurations from the current investiga-

tion is compared with the performance of the other

vectoring-nozzle concepts in figures 32 and 33, re-

spectively. Data in these figures are presented at a

nozzle pressure ratio near design for each concept
shown and therefore represent peak performance lev-

els. Data on the vertical axes are presented in the
form of a ratio such that a value of 1.0 indicates a

measured resultant vector angle equal to the geo-

metric ("metal") vector angle. The vertical axes

then represent vectoring efficiency of the configura-

tions. The horizontal axes parameters indicate the

loss in resultant thrust ratio (relative to the unvec-

tored case) per degree of resultant thrust vector angle
generated. A value of 0 indicates that there are no

resultant thrust ratio losses due to thrust vectoring.
Note that the data presented here from the current

investigation are for the _v,y = -30 ° configurations,
which produced less thrust loss per degree of flow

turning than the 5v,._ = -20 ° configurations.
A comparison of the performance of several

2-D C-D thrust-vectoring concepts in a yaw thrust-

vectored mode (open symbols) with several concepts

from the current investigation (solid symbols) is pre-
sented in figure 32, where yaw thrust-vectoring effi-

ciency 6y/Sv,y is shown as a function of a vectoring

performance-effectiveness parameter ritzy. The side-
wall round-port concept produced both large losses in

resultant thrust ratio per degree of yaw vector angle

generated and relatively low levels of yaw-vectoring

efficiency. As discussed in reference 13, these losses
are probably a result of momentum losses incurred

while attempting to turn subsonic flow through 90 ° .
(The. port was located upstream of the nozzle pri-

mary throat.) Low levels of yaw-vectoring effi-

ciency were attributed to the small open area of the

port. The powered rudder and post-exit flap con-

cepts show large values of vectoring performance-

effectiveness parameter because the yaw-vectoring

devices are acting on a supersonic stream. Similar
results can be seen for the best and worst cases of

post-exit yaw-flap vectoring from the current inves-

tigation. (See the solid symbols.) Note that on these
configurations, increasing yaw-flap length not only

increases yaw thrust-vectoring efficiency but also in-

creases resultant thrust ratio losses per degree of

vectoring. As seen, losses in F_/Fi per degree of
vectoring are on the same order as those of refer-

ence 17 for a similar post-exit flap concept.



The highestlevelsof yaw-vectoringefficiency
and the lowestlevelsof vectoringperformance-
effectivenessparameterwereattainedby the twin-
enginecanted-nozzlesconceptof reference15andthe
downstream-flapsconceptofreference13.Sincesim-
plepitchdeflectionof theupperandlowerdivergent
flapsof thecanted-nozzlesconceptcanprovideboth
pitchandyawvectoring,thrustlossesassociatedwith
this methodaresnlall.Whenthenozzlesarediffer-
entiallydeflected,the normal-forcevectorscreated
bythetwonozzlescancelout, andtheside-forcevec-
torsaddtogetherto givelargeresultantyawvector
angleswhileresultantthrust ratiolossesarekeptat
a minimum.It shouldbenotedthat.5v,ywassim-
ply a geometricflmctionof nozzlecantangle.Flaps
stowedin thesidewallsofthedownstream-flapscon-
ceptandsizedto fit betweenthedivergentflapsat
drypowerturnedtile internalnozzleflowat subsonic
speeds,andthereforetheywereefficientandeffective.
Howevertheflapturnedinto theexhaustcouldnot
bedeployedwhenthedivergentflapswerepitchvec-
tored,andthereforethisconcept,wasnot.asefficient
for combinedpitchandyawvectoring.(Seeconfigu-
rationF23in fig. 33.)Lowervaluesof yaw-vectoring
effÉciencywereobtainedfromthe downstream-flaps
conceptof reference14becauseof the sizingcon-
straintsplacedontheseflapswhichallowedsomeex-
haustto passthe internallydeflectedflap without
beingturned.

Othercasespresentedfrom the currentinvesti-
gationareconfigurationswith yawflapshingedup-
streamof theexitplaneandconfigurationswith the
trailingedgeendingat theexitplane([(xs- xt)/Is] +

ly/l_ = 1.00). These cases were chosen because

they provided the lowest resultant thrust ratio losses

per degree of resultant yaw vector angle. Resultant
thrust ratio losses for these yaw-vectoring configu-

rations were slightly larger than the downstream-

flaps concept of reference 14. However, for the two

cases presented where (x_- xt)/ls <_ 0.33, values

for yaw-vectoring efficiency were higher. Although
not shown, increasing flap length for each of these

hinge locations improves yaw-vectoring efficiency sig-
nificantly. As mentioned previously, however, resul-

tant thrust ratio losses were larger for the configura-

tions where [(Xs - xt)/ls] + ly/ls # 1.00.

The performance of combined pitch and yaw

thrust-vectoring configurations from the current in-

vestigation is compared with the performance of

previous concepts in figure 33. The vectoring

performance-effectiveness parameter r/r_ in this case
is equal to the loss in resultant thrust ratio per degree
of resultant thrust vector angle _r. (See the Symbols

section.) Thus, a concept that is theoretically ideal in

pitch thrust-vectoring efficiency (t_p/t_v, p = 1.0) will

be penalized by poor yaw thrust vectoring and vice

versa. The previously tested concepts that provide

a high level of pitch thrust-vectoring efficiency tend

to provide lower levels of yaw thrust-vectoring effi-

ciency. The twin-engine canted-nozzles concept, for

example, which had good performance for pure yaw

thrust vectoring (as it would for pure pitch), shows

a significant drop in pitch and yaw thrust-vectoring
efficiency when used for simultaneous pitch and yaw

thrust vectoring. The reason for this performance

decrease is that only one nozzle is deflected to obtain .

both pitch and yaw thrust vectors; thus, only half of

the available thrust is used to generate a combined

thrust-vectoring capability. (Remember that the re-

sultant thrust vector angles are a function of the ratio
of measured normal force or side force to measured

axial force. The measured axial force for this con-

figuration includes that generated by the unvectored

nozzle as well as that by the vectored one.)

Configurations presented from the current inves-

tigation for post-exit flaps produce relatively high

vahles of vectoring performance-effectiveness param-

eters (large thrust losses) that become larger with

increasing flap length. Yaw thrust-vectoring effi-

ciency increases with increasing flap length, whereas

pitch thrust-vectoring efficiency remains nearly un-

changed. As mentioned previously, concepts are also
presented in which the yaw-flap hinge is located up-

stream of the exit plane and the trailing edge ends

at the exit. Generally, configurations from the cur-

rent investigation, with yaw flaps hinged upstream of

the exit and the trailing edge ending at the exit, pro-

vided lower values of pitch-vectoring efficiency and

higher values of yaw-vectoring efficiency than the

previously tested concepts presented in figure 33.

In conclusion, a comparison of the current config-
urations with previous results indicates that these

multiaxis thrust-vectoring nozzles produce reason-

ably high levels of thrust-vectoring efficiency without

causing large losses in resultant thrust ratio per de-

gree of resultant thrust vector angle, and hence they

represent a promising simultaneous pitch and yaw

thrust-vectoring concept.

Conclusions

A static investigation has been conducted to

determine the nozzle internal performance and

flow-turning characteristics of two-dimensional

convergent-divergent (2-D C-D) nozzles modified to

provide simultaneous thrust vectors in both the

normal-force and side-force planes. This concept uti-

lized divergent flap rotation for thrust vectoring in

the pitch plane and deflection of flat yaw flaps hinged
at the end of the sidewalls for yaw thrust vectoring.

The hinge location of the yaw flaps was varied at

13



four positionsfromthe exit planeof the nozzleto
the throat plane. The yawflapsweredesignedto
containthe flow laterallyindependentof operating
conditions. In orderto eliminateany physicalin-
terferencebetweenthe yaw flap deflectedinto the
exhauststreamand the divergentflaps,the down-
streamcornersof both upperand lowerdivergent
flapswerecutoffto allowforupto 30° ofyaw-flapde-
flection.Thisdivergentflapcutoutwasnecessaryfor
thethreehingelocationsupstreamof theexit plane
onall fournozzlesandfor the lowerdivergentflaps
on the pitch-vectorednozzlesfor the hingelocation

at the exit plane. This investigation studied the im-

pact of varying the nozzle pitch vector angle, throat

area, yaw-flap hinge location, yaw-flap length, and

yaw-flap deflection angle on nozzle internal perfor-
mance characteristics. High-pressure air was used to

simulate the jet exhaust at nozzle pressure ratios up
to 7.0. Data trends lead to the following conclusions:

1. Results indicate that from an internal perfor-

mance viewpoint, a 2-D C-D nozzle configuration
with yaw flaps hinged at the end of the sidewalls and

with the hinge located upstream of the exit plane

(and downstream corners of the divergent flaps cut

off) is a viable sinmltaneous pitch and yaw thrust-

vectoring concept.
2. The removal of the downstream corners of the

divergent flaps for a yaw-flap hinge location at the

throat plane had very little effect on internal thrust

ratio for a low-expansion-ratio forward-thrust nozzle

(less than 0.5 percent at a nozzle pressure ratio near

design). At afterburning (A/B) power, divergent flap
cutout on a forward-thrust nozzle resulted in a loss

of approximately 1 percent in internal thrust ratio at

a nozzle pressure ratio (NPR) near design for a hinge

location slightly upstream of the throat.

3. Thrust vectoring from yaw flaps hinged at the

exit plane caused large losses in resultant thrust ratio

and produced low resultant yaw thrust vector angles.

4. Dry power configurations in which the yaw-flap

hinge is located upstream of the exit and the trailing

edge ends at the exit of the nozzle produced larger

resultant yaw vector angles than configurations with

yaw flaps that end upstream or downstream of the
exit plane.

5. Generally, yaw vectoring of the dry power noz-

zle to the maximum deflection angle about a hinge

location upstream of the exit plane caused the throat

to rotate in the nozzle and decrease in effective area,

thereby decreasing the discharge coefficient. This re-
sult led to an increased amount of subsonic flow turn-

ing and consequently an increase in resultant thrust
ratio.

6. Pitch thrust vectoring of a yaw-vectored nozzle

had little effect on resultant yaw vector angle.

7. In general, yaw thrust vectoring of the pitch-

vectored nozzle decreased the resultant pitch vector

angle.

NASA Langley Research Center
Hampton, VA 23665-5225
February 8, 1990
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Table I. Index to Data Figures

(a) Dry power forward-thrust nozzle

with _v,p = 0 °
(b) Dry power pitch-vectored nozzle

with 6v,p = 19.53 °

(xs - xt)/ls ly/Is 6v,v, deg
1.00 0 0

.33 0

.33 -30

.67 0

.67 -30

1.00 0

1.00 -20
1.00 -3O

0.67 0.33 0
.33 -20

.33 -30

.67 0

.67 -30

1.00 0

1.00 -30

0.33 0.33 0

.33 -30

.67 0

.67 -20

.67 -30

1.00 0

1.00 -30

0 0.33 0

.33 -30

.67 0

.67 -30

1.00 0
1.00 -20

1.00 -30

Internal

performance

figures

8(a), 9(a), 27(a)
10(a), 27(a)
10(a)
10(b), 27(a)
10(b)
lO(c), 27(a)
10(c)
lO(c), 29(a)
9(a), 11(a)
IX(a)
ll(a)
ll(b)
11(b)
11(c)
ll(c), 29(a)
12(a)
12(a), 28(a)
9(a), 12(b)
12(b)
12(b), 28(a)
12(c)
12(c), 28(a), 29(a)
13(a)
13(a)
13(b)
13(5)
9(a), 13(e)
13(c)
13(c), 29(a)

(Xs - xt)/ls ly/ls 6v,y, deg
1.00 0 0

.33 0

.33 -30

.67 0

.67 -30

1.00 0

1.00 -20

1.00 -30

0.67 0.33 0

.33 -20

.33 -30

.67 0

.67 -30

1.00 0

1.00 -30

0.33 0.33 0
.33 -30

.67 0

.67 -20

.67 -30

1.00 0

1.00 -30

0 0.33 0

.33 -30

.67 0

.67 -30

1.00 0
1.00 -20

1.00 -3O

Internal

performance

figures

8(b), 9(b), 27(b)
14(a), 27(b)
14(a)
14(b), 27(b)
14(b)
14(c), 27(b)
14(c)
14(c), 29(b)
9(5), 15(a)
15(a)
15(a)
15(5)
15(b)
15(c)
15(c), 29(b)
16(a)
16(a), 28(5)
9(b), 16(b)
16(b)
16(b), 28(b)
16(c)
16(c), 28(b), 29(b)
17(a)
17(a)
17(b)
17(b)
9(b), 17(c)
17(c)
17(c), 29(b)
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TableI. Concluded

(c) A/B powerforward-thrustnozzle
with 6v,p = 0°

(d) A/B power pitch-vectored nozzle

with 6v,p = 20.26 °

(zs - xt)/Is
1.00

0.66

0.31

-0.03

0

1.03

1.03

0.34
.34

0.34

.34

.69

.69
1.03

1.03

1.03

1.03
1.03

5v,y, deg
0

0

-30

Internal

performance

figures

8(c), 9(c), 27(c)

18, 27(c)
18, 29(c)

0 9(c), 19
-30 19

0

-30
0

-30

0

-30

0
-20

-30

2O(a)
2O(a), 28(c)
9(c), 20(b)
20(b), 28(c)
20(c)
20(c), 28(c), 29(c)
9(c), 21
21

21, 29(c)

(zs - zt)/l,
1.00

0.66

0.31

-0.03

ly/ls
0

1.03

1.03

1.03

0.34

.34

.34

0.34
.34

.69

.69

.69

1.03

1.03

0.34

.34

.69

.69

1.03

1.03
1.03

6v_y, deg
0

0

-20

-30

Internal

performance

figures

8((1), 9(d), 27(d)
22.27(d)
22

22, 29(d)

0 9((t), 23
-20 23

-30 23

0 24(a)

-30 24(a), 28(d)

0 9(d), 24(b)

-20 24(b)

-30 24(b), 28(d)

0 24(c)

-30 24(c), 28(d), 29(d)

0 25(a)
-30 25(a)

0 25(b)
-30 25(b)

0 9(d), 25(c)
-20 25(c)
-30 25(c), 29(d)
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(b) Photograph.

Figure 1. Continued.
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Airflow

path

Center of

pitch-flap
rotation

",\ 20

Nozzle centerline " "" --. ,Z"_._.

20 °

1.17 °

5v,p = 0°

(forward-thrust
mode)

5v, p = 19.53 °

(pitch thrust-
vectored mode)

(a) Side view sketch of dry power baseline nozzles.

Figure 2. Nozzle geometry with one sidewall removed. Linear dimensions are in inches.
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(b) Dry power nozzle with 6v,p = 0°.

Figure 2. Continued.
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(c) Dry power nozzle with 6v,p

Figure 2. Continued.
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(d) A/B nozzle with _t,,p = 0°.

Figure 2. Continued.
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(c) A/B nozzle with 6v,p = 20.26 °.

Figure 2. Concluded.
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Figure 3. Top view sketch of typical dry power configuration.
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Figure 4. Top view sketch of yaw-flap hinge locations. Linear dimensions are in inches.
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(×s-xt)//s = 1.00
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(Xs" xt)/I s = 0.67

i

(x s- xt)/l s = 0.33

(a) Photographs.

(Xs- xt)/ls = 0

L-89-15

Figure 6. Details of dry power nozzle configurations (_v,l) = 0°) with the same set of yaw flaps at four different
hinge locations, l u/l s = 0.67.
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(b) Sketches. 5z,p = 0°; a,,y = 0o; lv/l, = 0.67.

Figure 6. Concluded.
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(a) (xs - xt)/Is = 0.67; ly/ls = 0.33.

Figure 7. Photographs of dry power nozzle configurations (6v,p = 0°) with different yaw-flap deflection angles
at a constant hinge location.
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Figure 29. Effect of yaw-flap hinge location on nozzle internal performance characteristics for 6,, v = -30 °.
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